Nephritic syndrome pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 4: Line 4:


==Pathophysiology==
==Pathophysiology==
The exact [[pathophysiology]] is dependent on the specific diagnosis. However, the common features are an [[inflammation]] of the [[glomerulus|glomeruli]], leading to salt and water retention and a reduction in the [[kidney function]].
It is believed that glomerular inflammation requires the activation of both the humoral and the cell-mediated immune system.(3) Various glomerular disease have different pathophysiology, but the final cellular changes, immunological activation, and renal scarring are shared outcomes.
 
===Role of Antibodies===
Immunological mechanisms mediated by antibodies are required in the pathogenesis of glomerulonephritis. Antibodies are thought to bind either intrinsic glomerular components or specific compounds with unique physiochemical features that are present surrounding the glomerulus. Type IV collagen is an intrinsic glomerular component involved in Goodpasture's syndrome; whereas histone-DNA complexes in systemic lupus erythematosus are not intrinsic compounds to the glomerulus.<ref name="pmid9744974">{{cite journal| author=Hricik DE, Chung-Park M, Sedor JR|title=Glomerulonephritis. | journal=N Engl J Med | year= 1998 | volume= 339 | issue= 13 | pages= 888-99 |pmid=9744974 | doi=10.1056/NEJM199809243391306 | pmc= |url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9744974  }} </ref><ref name="pmid8621555">{{cite journal| author=Kalluri R, Sun MJ, Hudson BG, Neilson EG| title=The Goodpasture autoantigen. Structural delineation of two immunologically privileged epitopes on alpha3(IV) chain of type IV collagen. | journal=J Biol Chem | year= 1996 | volume= 271 | issue= 15 | pages= 9062-8 | pmid=8621555 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8621555  }} </ref><ref name="pmid2660143">{{cite journal| author=Jacob L, Viard JP, Allenet B, Anin MF, Slama FB, Vandekerckhove J et al.| title=A monoclonal anti-double-stranded DNA autoantibody binds to a 94-kDa cell-surface protein on various cell types via nucleosomes or a DNA-histone complex. | journal=Proc Natl Acad Sci U S A | year= 1989 | volume= 86 | issue= 12 | pages= 4669-73 | pmid=2660143 | doi= | pmc=PMC287332 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2660143  }} </ref> However, presence of antibodies alone is not sufficient for glomerular inflammation. Complexes formed by the antibody-antigen complexes must in fact be able to evade clearance by the reticuloendothelial system to effectively deposit at the glomerulus.<ref name="pmid9744974">{{cite journal| author=Hricik DE, Chung-Park M, Sedor JR| title=Glomerulonephritis. | journal=N Engl J Med | year= 1998 | volume= 339 | issue= 13 | pages= 888-99 | pmid=9744974 | doi=10.1056/NEJM199809243391306 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9744974  }} </ref>(6)
 
===Role of T Cells===
T cells are important for inducing glomerular hypercellularity.<ref name="pmid315992">{{cite journal| author=Bhan AK, Collins AB, Schneeberger EE, McCluskey RT| title=A cell-mediated reaction against glomerular-bound immune complexes. | journal=J Exp Med | year= 1979 | volume= 150 | issue= 6 | pages= 1410-20 | pmid=315992 | doi= | pmc=PMC2185734 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=315992  }} </ref> T cells are present in both proliferative and non-proliferative glomerular diseases.<ref name="pmid7552103">{{cite journal| author=Main IW, Atkins RC| title=The role of T-cells in inflammatory kidney disease. | journal=Curr Opin Nephrol Hypertens | year= 1995 | volume= 4 | issue= 4 | pages= 354-8 | pmid=7552103 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7552103  }} </ref> Pro-inflammatory pathways are activated following initial injury to induce further synthesis of cytokines, complement activation, influx of circulating leukocytes, release of proteolytic enzymes, and activation of coagulation pathway.<ref name="pmid8361123">{{cite journal| author=Couser WG| title=Pathogenesis of glomerulonephritis. | journal=Kidney Int Suppl | year= 1993 | volume= 42 | issue=  | pages= S19-26 | pmid=8361123 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8361123  }} </ref><ref name="pmid7933825">{{cite journal| author=Johnson RJ| title=The glomerular response to injury: progression or resolution? | journal=Kidney Int | year= 1994 | volume= 45 | issue= 6 | pages= 1769-82 | pmid=7933825 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7933825  }} </ref> These changes make the glomerular cell itself, in addition to the infiltrating glomerular cells, an active component of destruction and subsequent restoration.<ref name="pmid7933825">{{cite journal| author=Johnson RJ| title=The glomerular response to injury: progression or resolution? | journal=Kidney Int | year= 1994 | volume= 45 | issue= 6 | pages= 1769-82 | pmid=7933825 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7933825  }} </ref><ref name="pmid8468928">{{cite journal| author=Sedor JR, Konieczkowski M, Huang S, Gronich JH, Nakazato Y, Gordon G et al.| title=Cytokines, mesangial cell activation and glomerular injury. | journal=Kidney Int Suppl | year= 1993 | volume= 39 | issue=  | pages= S65-70 | pmid=8468928 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8468928  }} </ref><ref name="pmid9358740">{{cite journal| author=Johnson RJ| title=What mediates progressive glomerulosclerosis? The glomerular endothelium comes of age. | journal=Am J Pathol | year= 1997 | volume= 151 | issue= 5 | pages= 1179-81 | pmid=9358740 | doi= | pmc=PMC1858081 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9358740  }} </ref>
 
===Matrix Remodeling===
Matrix remodeling is in part involved in the activation and proliferation of glomerular cells. The resident and the infiltrating cells will both receive unique signals following matrix remodeling that are involved in the activation of pro-inflammatory pathways in these cells.<ref name="pmid9744974">{{cite journal| author=Hricik DE, Chung-Park M, Sedor JR| title=Glomerulonephritis. | journal=N Engl J Med | year= 1998 | volume= 339 | issue= 13 | pages= 888-99 | pmid=9744974 | doi=10.1056/NEJM199809243391306 | pmc= |url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9744974  }} </ref>
 
 
===Adaptive Mechanisms===
Due to ongoing injury, adaptive changes take place in order to help in the resolution of glomerulonephritis. Hyperfiltration, intraglomerular hypertension, and irregular intravascular stress and shear are all processes that may on one hand worsen the renal injury, but are also crucial for the remainder of the functioning glomerulus.<ref name="pmid7933825">{{cite journal| author=Johnson RJ| title=The glomerular response to injury: progression or resolution? | journal=Kidney Int | year= 1994 | volume= 45 | issue= 6 | pages= 1769-82 | pmid=7933825 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7933825  }} </ref><ref name="pmid8468928">{{cite journal| author=Sedor JR, Konieczkowski M, Huang S, Gronich JH, Nakazato Y, Gordon G et al.| title=Cytokines, mesangial cell activation and glomerular injury. | journal=Kidney Int Suppl | year= 1993 | volume= 39 | issue=  | pages= S65-70 | pmid=8468928 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8468928  }} </ref><ref name="pmid9358740">{{cite journal| author=Johnson RJ| title=What mediates progressive glomerulosclerosis? The glomerular endothelium comes of age. | journal=Am J Pathol | year= 1997 | volume= 151 | issue= 5 | pages= 1179-81 | pmid=9358740 | doi= | pmc=PMC1858081 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9358740  }} </ref><ref name="pmid8743495">{{cite journal| author=Brenner BM, Lawler EV, Mackenzie HS| title=The hyperfiltration theory: a paradigm shift in nephrology. | journal=Kidney Int | year= 1996 | volume= 49 | issue= 6 | pages= 1774-7 | pmid=8743495 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8743495  }} </ref>
 
 
===Resolution of Disease===
Apoptosis, defined as programmed cell death, plays a significant role in defining the resolution of disease and in the renal scarring following glomerulonephritis.<ref name="pmid8731187">{{cite journal| author=Savill J, Mooney A, Hughes J| title=Apoptosis and renal scarring. | journal=Kidney Int Suppl | year= 1996 | volume= 54 | issue=  | pages= S14-7 | pmid=8731187 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8731187  }} </ref>
 
==References==
==References==
{{reflist|2}}
{{reflist|2}}

Revision as of 16:57, 25 November 2013

Nephritic syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Nephritic syndrome from other Diseases

Epidemiology and Demographics

Natural History, Complications and Prognosis

History and Symptoms

Physical Examination

Laboratory Findings

Renal Biopsy

Echocardiography or Ultrasound

Treatment

Medical Therapy

Case Studies

Case #1

Nephritic syndrome pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Nephritic syndrome pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Nephritic syndrome pathophysiology

CDC on Nephritic syndrome pathophysiology

Nephritic syndrome pathophysiology in the news

Blogs on Nephritic syndrome pathophysiology

Directions to Hospitals Treating Nephritic syndrome

Risk calculators and risk factors for Nephritic syndrome pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Pathophysiology

It is believed that glomerular inflammation requires the activation of both the humoral and the cell-mediated immune system.(3) Various glomerular disease have different pathophysiology, but the final cellular changes, immunological activation, and renal scarring are shared outcomes.

Role of Antibodies

Immunological mechanisms mediated by antibodies are required in the pathogenesis of glomerulonephritis. Antibodies are thought to bind either intrinsic glomerular components or specific compounds with unique physiochemical features that are present surrounding the glomerulus. Type IV collagen is an intrinsic glomerular component involved in Goodpasture's syndrome; whereas histone-DNA complexes in systemic lupus erythematosus are not intrinsic compounds to the glomerulus.[1][2][3] However, presence of antibodies alone is not sufficient for glomerular inflammation. Complexes formed by the antibody-antigen complexes must in fact be able to evade clearance by the reticuloendothelial system to effectively deposit at the glomerulus.[1](6)

Role of T Cells

T cells are important for inducing glomerular hypercellularity.[4] T cells are present in both proliferative and non-proliferative glomerular diseases.[5] Pro-inflammatory pathways are activated following initial injury to induce further synthesis of cytokines, complement activation, influx of circulating leukocytes, release of proteolytic enzymes, and activation of coagulation pathway.[6][7] These changes make the glomerular cell itself, in addition to the infiltrating glomerular cells, an active component of destruction and subsequent restoration.[7][8][9]

Matrix Remodeling

Matrix remodeling is in part involved in the activation and proliferation of glomerular cells. The resident and the infiltrating cells will both receive unique signals following matrix remodeling that are involved in the activation of pro-inflammatory pathways in these cells.[1]


Adaptive Mechanisms

Due to ongoing injury, adaptive changes take place in order to help in the resolution of glomerulonephritis. Hyperfiltration, intraglomerular hypertension, and irregular intravascular stress and shear are all processes that may on one hand worsen the renal injury, but are also crucial for the remainder of the functioning glomerulus.[7][8][9][10]


Resolution of Disease

Apoptosis, defined as programmed cell death, plays a significant role in defining the resolution of disease and in the renal scarring following glomerulonephritis.[11]

References

  1. 1.0 1.1 1.2 Hricik DE, Chung-Park M, Sedor JR (1998). "Glomerulonephritis". N Engl J Med. 339 (13): 888–99. doi:10.1056/NEJM199809243391306. PMID 9744974.
  2. Kalluri R, Sun MJ, Hudson BG, Neilson EG (1996). "The Goodpasture autoantigen. Structural delineation of two immunologically privileged epitopes on alpha3(IV) chain of type IV collagen". J Biol Chem. 271 (15): 9062–8. PMID 8621555.
  3. Jacob L, Viard JP, Allenet B, Anin MF, Slama FB, Vandekerckhove J; et al. (1989). "A monoclonal anti-double-stranded DNA autoantibody binds to a 94-kDa cell-surface protein on various cell types via nucleosomes or a DNA-histone complex". Proc Natl Acad Sci U S A. 86 (12): 4669–73. PMC 287332. PMID 2660143.
  4. Bhan AK, Collins AB, Schneeberger EE, McCluskey RT (1979). "A cell-mediated reaction against glomerular-bound immune complexes". J Exp Med. 150 (6): 1410–20. PMC 2185734. PMID 315992.
  5. Main IW, Atkins RC (1995). "The role of T-cells in inflammatory kidney disease". Curr Opin Nephrol Hypertens. 4 (4): 354–8. PMID 7552103.
  6. Couser WG (1993). "Pathogenesis of glomerulonephritis". Kidney Int Suppl. 42: S19–26. PMID 8361123.
  7. 7.0 7.1 7.2 Johnson RJ (1994). "The glomerular response to injury: progression or resolution?". Kidney Int. 45 (6): 1769–82. PMID 7933825.
  8. 8.0 8.1 Sedor JR, Konieczkowski M, Huang S, Gronich JH, Nakazato Y, Gordon G; et al. (1993). "Cytokines, mesangial cell activation and glomerular injury". Kidney Int Suppl. 39: S65–70. PMID 8468928.
  9. 9.0 9.1 Johnson RJ (1997). "What mediates progressive glomerulosclerosis? The glomerular endothelium comes of age". Am J Pathol. 151 (5): 1179–81. PMC 1858081. PMID 9358740.
  10. Brenner BM, Lawler EV, Mackenzie HS (1996). "The hyperfiltration theory: a paradigm shift in nephrology". Kidney Int. 49 (6): 1774–7. PMID 8743495.
  11. Savill J, Mooney A, Hughes J (1996). "Apoptosis and renal scarring". Kidney Int Suppl. 54: S14–7. PMID 8731187.

Template:WH Template:WS