DNAJC5: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''DnaJ homolog subfamily C member 5''', also known as '''cysteine string protein''' or '''CSP''' is a [[protein]], that in humans encoded by the ''DNAJC5'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: DNAJC5 DnaJ (Hsp40) homolog, subfamily C, member 5| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80331| accessdate = }}</ref> It was first described in 1990.<ref name="pmid2129171">{{cite journal | vauthors = Zinsmaier KE, Hofbauer A, Heimbeck G, Pflugfelder GO, Buchner S, Buchner E | title = A cysteine-string protein is expressed in retina and brain of Drosophila | journal = J. Neurogenet. | volume = 7 | issue = 1 | pages = 15–29 |date=November 1990 | pmid = 2129171 | doi = 10.3109/01677069009084150}}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Gene ==
{{GNF_Protein_box
| image = PBB_Protein_DNAJC5_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2ctw.
| PDB = {{PDB2|2ctw}}
| Name = DnaJ (Hsp40) homolog, subfamily C, member 5
| HGNCid = 16235
| Symbol = DNAJC5
| AltSymbols =; CSP; DKFZP434N1429; DKFZp761N1221; FLJ00118; FLJ13070
| OMIM = 
| ECnumber = 
| Homologene = 9631
| MGIid = 892995
| Function = {{GNF_GO|id=GO:0031072 |text = heat shock protein binding}} {{GNF_GO|id=GO:0051082 |text = unfolded protein binding}}
| Component = {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0006457 |text = protein folding}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 80331
    | Hs_Ensembl = ENSG00000101152
    | Hs_RefseqProtein = NP_079495
    | Hs_RefseqmRNA = NM_025219
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 20
    | Hs_GenLoc_start = 61996979
    | Hs_GenLoc_end = 62037828
    | Hs_Uniprot = Q9H3Z4
    | Mm_EntrezGene = 13002
    | Mm_Ensembl = ENSMUSG00000000826
    | Mm_RefseqmRNA = XM_990872
    | Mm_RefseqProtein = XP_995966
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 2
    | Mm_GenLoc_start = 181449912
    | Mm_GenLoc_end = 181481656
    | Mm_Uniprot = Q921J3
  }}
}}
'''DnaJ (Hsp40) homolog, subfamily C, member 5''', also known as '''DNAJC5''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: DNAJC5 DnaJ (Hsp40) homolog, subfamily C, member 5| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80331| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
In humans, the gene is located on the long arm of [[chromosome 20]] (20q13.33) on the Watson (positive strand). The gene is 40,867 bases in length and the encoded [[protein]] has 198 [[amino acid]]s with a predicted molecular weight of 22.149 kilo[[Dalton (unit)|Dalton]]s (kDa). The weight of the mature protein is 34kDa.
{{PBB_Summary
| section_title =
| summary_text =
}}


==References==
This gene is highly conserved and found both in [[invertebrate]]s and [[vertebrate]]s. In humans, a [[pseudogene]] of this gene is located on the short arm of [[chromosome 8]].
 
== Structure ==
 
The organisation of the protein is as follows:<ref name="pmid11580898"/>
* an [[N-terminal|N-terminus]] [[phosphorylation]] site for [[protein kinase A]]
* a [[Chaperone DnaJ|J domain]] (~70 amino acids)
* a linker region
* a [[cysteine]] motif consisting of 13–15 cysteines within a stretch of 25 amino acids. It is heavily [[palmitoylated]] in the cysteine string motif.
* a less conserved [[C-terminus|C-terminal]] domain
 
== Tissue distribution ==
 
This protein is abundant in neural tissue and displays a characteristic localization to synaptic and [[clathrin]] coated vesicles. It is also found on secretory vesicles in endocrine, neuroendocrine and exocrine cells. This protein makes up ~1% of the protein content of the [[synaptic vesicle]]s.<ref name="pmid22073189">{{cite journal | vauthors = Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, Morris JC, Sands MS, Goate A, Cruchaga C | title = Exome-Sequencing Confirms DNAJC5 Mutations as Cause of Adult Neuronal Ceroid-Lipofuscinosis | journal = PLoS ONE | volume = 6 | issue = 11 | pages = e26741 | year = 2011 | pmid = 22073189 | doi = 10.1371/journal.pone.0026741 | pmc=3208569}}</ref> DNAJC5 appears to have a role in stimulated [[exocytosis]].<ref name="pmid9437017">{{cite journal | vauthors = Ranjan R, Bronk P, Zinsmaier KE | title = Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling | journal = J. Neurosci. | volume = 18 | issue = 3 | pages = 956–64 |date=February 1998 | pmid = 9437017 | doi = }}</ref>
 
== Function ==
 
The encoded protein is a member of the J protein family. These proteins function in many cellular processes by regulating the [[ATPase]] activity of 70 kDa [[heat shock protein]]s ([[Hsp70]]). DNAJC5 is a [[guanine nucleotide exchange factor]] for [[G protein|G<sub>α</sub>]] proteins.<ref name="pmid17113038">{{cite journal | vauthors = Bai L, Swayne LA, Braun JE | title = The CSPalpha/G protein complex in PC12 cells | journal = Biochem. Biophys. Res. Commun. | volume = 352 | issue = 1 | pages = 123–9 |date=January 2007 | pmid = 17113038 | doi = 10.1016/j.bbrc.2006.10.178 }}</ref> CSPα plays a role in membrane [[protein targeting|trafficking]] and [[protein folding]], and has been shown to have anti-[[neurodegeneration|neurodegenerative]] properties. It is known to play a role in [[cystic fibrosis]] and [[Huntington's disease]].<ref name="entrez"/>
 
This protein has been proposed as a key element of the synaptic molecular machinery devoted to the rescue of synaptic proteins that have been unfolded by activity dependent stress.<ref name="pmid15091340">{{cite journal | vauthors = Fernández-Chacón R, Wölfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Muñoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Südhof TC | title = The synaptic vesicle protein CSP alpha prevents presynaptic degeneration | journal = Neuron | volume = 42 | issue = 2 | pages = 237–51 |date=April 2004 | pmid = 15091340 | doi = 10.1016/S0896-6273(04)00190-4}}</ref><ref name="pmid16269331">{{cite journal | vauthors = Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC | title = Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration | journal = Cell | volume = 123 | issue = 3 | pages = 383–96 |date=November 2005 | pmid = 16269331 | doi = 10.1016/j.cell.2005.09.028 }}</ref>  [[Syntaxin 1A]], a plasma membrane [[SNARE (protein)|SNARE]] (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, forms a complex with CSPα, a [[G protein]] and an [[N-type calcium channel]]. [[Huntingtin]] may be able displace both syntaxin 1A and CSPα from N-type channels.<ref name="pmid16875662">{{cite journal | vauthors = Swayne LA, Beck KE, Braun JE | title = The cysteine string protein multimeric complex | journal = Biochem. Biophys. Res. Commun. | volume = 348 | issue = 1 | pages = 83–91 |date=September 2006 | pmid = 16875662 | doi = 10.1016/j.bbrc.2006.07.033 }}</ref> CSP interacts with the calcium sensor protein [[SYT9|synaptotagmin 9]] via its linker domain.<ref name="pmid20847230">{{cite journal | vauthors = Boal F, Laguerre M, Milochau A, Lang J, Scotti PA | title = A charged prominence in the linker domain of the cysteine-string protein Cspα mediates its regulated interaction with the calcium sensor synaptotagmin 9 during exocytosis | journal = FASEB J. | volume = 25 | issue = 1 | pages = 132–43 |date=January 2011 | pmid = 20847230 | doi = 10.1096/fj.09-152033 }}</ref>
 
[[ZDHHC17|Huntingtin-interacting protein 14]], a [[palmitoyl transferase]], is required for exocytosis and targeting of CSP to synaptic vesicles. The palmitoyl residues are transferred to the cysteine residues. If these resides are mutated membrane targeting is reduced or lost.<ref name="pmid9761715">{{cite journal | vauthors = Chamberlain LH, Burgoyne RD | title = The cysteine-string domain of the secretory vesicle cysteine-string protein is required for membrane targeting | journal = Biochem. J. | volume = 335 | issue = 2| pages = 205–9 |date=October 1998 | pmid = 9761715 | pmc = 1219770 | doi = }}</ref> The rat CSP forms a complex with Sgt ([[SGTA]]) and Hsc70 ([[HSPA8]]) located on the [[synaptic vesicle]] surface. This complex functions as an ATP-dependent [[chaperone (protein)|chaperone]] that reactivates denatured substrates.  Furthermore, the Csp/Sgt/Hsc70 complex appears to be important for maintenance of normal [[synapse]]s.<ref name="pmid11580898">{{cite journal | vauthors = Tobaben S, Thakur P, Fernández-Chacón R, Südhof TC, Rettig J, Stahl B | title = A trimeric protein complex functions as a synaptic chaperone machine | journal = Neuron | volume = 31 | issue = 6 | pages = 987–99 |date=September 2001 | pmid = 11580898 | doi = 10.1016/S0896-6273(01)00427-5 }}</ref>
 
Its expression may be increased with the use of [[lithium]].<ref name="pmid10820197">{{cite journal | vauthors = Cordeiro ML, Umbach JA, Gundersen CB | title = Lithium ions enhance cysteine string protein gene expression in vivo and in vitro | journal = J. Neurochem. | volume = 74 | issue = 6 | pages = 2365–72 |date=June 2000 | pmid = 10820197 | doi = 10.1046/j.1471-4159.2000.0742365.x }}</ref> [[Quercetin]]  promotes formation of stable CSPα-CSPα dimers.<ref name="pmid20548785">{{cite journal | vauthors = Xu F, Proft J, Gibbs S, Winkfein B, Johnson JN, Syed N, Braun JE | title = Quercetin targets cysteine string protein (CSPalpha) and impairs synaptic transmission | journal = PLoS ONE | volume = 5 | issue = 6 | pages = e11045 | year = 2010 | pmid = 20548785 | pmc = 2883571 | doi = 10.1371/journal.pone.0011045 }}</ref>
 
Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis.<ref name="pmid10934253">{{cite journal | vauthors = Dawson-Scully K, Bronk P, Atwood HL, Zinsmaier KE| title = Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis in Drosophila. | journal = J. Neurosci. | volume = 20 | issue = 16 | pages = 6039–47 |date=August 2000 | pmid = 10934253 | doi = }}</ref>
 
== Interactions ==
DNAJC5 has been shown to [[Protein-protein interaction|interact]] with the [[cystic fibrosis transmembrane conductance regulator]].<ref name="pmid12039948">{{cite journal | vauthors = Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA | title = Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator | journal = J. Biol. Chem. | volume = 277 | issue = 32 | pages = 28948–58 |date=August 2002 | pmid = 12039948 | doi = 10.1074/jbc.M111706200 | url =  }}</ref>
 
== Clinical significance ==
 
Mutations in this gene may cause [[neuronal ceroid lipofuscinosis]].<ref name="pmid21820099">{{cite journal | vauthors = Nosková L, Stránecký V, Hartmannová H, Přistoupilová A, Barešová V, Ivánek R, Hůlková H, Jahnová H, van der Zee J, Staropoli JF, Sims KB, Tyynelä J, Van Broeckhoven C, Nijssen PC, Mole SE, Elleder M, Kmoch S | title = Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis | journal = American Journal of Human Genetics | volume = 89 | issue = 2 | pages = 241–52 |date=August 2011 | pmid = 21820099 | doi = 10.1016/j.ajhg.2011.07.003 | pmc=3155175}}</ref>
 
== References ==
{{reflist|2}}
{{reflist|2}}
==Further reading==
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
*{{cite journal  | doi= 10.1046/j.1471-4159.2000.0741781.x  | vauthors= Chamberlain LH, Burgoyne  RD |title= Cysteine string protein: the chaperone at the synapse . |journal= J. Neurochem. |volume=74  | issue= 5 |pages= 1781–1789 |year= 2000 |pmid= 10800920 }}
| citations =  
*{{cite journal  | vauthors=Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA, Gundersen CB | title=Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. | journal=Science |volume=263 |issue= 5149 | pages=981–82 |year=1994 |PMID= 7906056 |doi= 10.1126/science.7906056 }}
*{{cite journal  | author=Coppola T, Gundersen C |title=Widespread expression of human cysteine string proteins. |journal=FEBS Lett. |volume=391 |issue= 3 |pages= 269-72 |year= 1996 |pmid= 8764987 |doi=  }}
*{{cite journal  | vauthors=Gundersen CB, Mastrogiacomo A, Faull K, Umbach JA | title=Extensive lipidation of a Torpedo cysteine string protein. |journal=Journal of Biological Chemistry |volume=269 |issue=30 | pages=19197–19199 | year=1994 | PMID= 8034679 }}
*{{cite journal  | author=Zhang H, Kelley WL, Chamberlain LH, ''et al.'' |title=Mutational analysis of cysteine-string protein function in insulin exocytosis. |journal=J. Cell. Sci. |volume=112 ( Pt 9) |issue=  |pages= 1345-51 |year= 1999 |pmid= 10194413 |doi=  }}
*{{cite journal  | vauthors=Mastrogiacomo A, Gundersen CB |title=The nucleotide and deduced amino acid sequence of a rat cysteine string protein. | journal=Molecular brain research |volume=28 | issue=1 | pages=12–18 | year=1995 | PMID=7535880 }}
*{{cite journal  | author=Hattori A, Okumura K, Nagase T, ''et al.'' |title=Characterization of long cDNA clones from human adult spleen. |journal=DNA Res. |volume=7 |issue= 6 |pages= 357-66 |year= 2001 |pmid= 11214971 |doi=  }}
*{{cite journal  | vauthors=Coppola T, Gundersen C |title=Widespread expression of human cysteine string proteins. |journal=FEBS Lett. |volume=391 |issue= 3 |pages= 269–72 |year= 1996 |pmid= 8764987 |doi=10.1016/0014-5793(96)00750-8 }}
*{{cite journal  | author=Evans GJ, Wilkinson MC, Graham ME, ''et al.'' |title=Phosphorylation of cysteine string protein by protein kinase A. Implications for the modulation of exocytosis. |journal=J. Biol. Chem. |volume=276 |issue= 51 |pages= 47877-85 |year= 2002 |pmid= 11604405 |doi= 10.1074/jbc.M108186200 }}
*{{cite journal  | vauthors=Zhang H, Kelley WL, Chamberlain LH |title=Mutational analysis of cysteine-string protein function in insulin exocytosis. |journal=J. Cell Sci. |volume=112 |issue=  9|pages= 1345–51 |year= 1999 |pmid= 10194413 |doi=  |display-authors=etal}}
*{{cite journal  | author=Deloukas P, Matthews LH, Ashurst J, ''et al.'' |title=The DNA sequence and comparative analysis of human chromosome 20. |journal=Nature |volume=414 |issue= 6866 |pages= 865-71 |year= 2002 |pmid= 11780052 |doi= 10.1038/414865a }}
*{{cite journal  | vauthors=Hattori A, Okumura K, Nagase T |title=Characterization of long cDNA clones from human adult spleen. |journal=DNA Res. |volume=7 |issue= 6 |pages= 357–66 |year= 2001 |pmid= 11214971 |doi=10.1093/dnares/7.6.357 |display-authors=etal}}
*{{cite journal  | author=Zhang H, Peters KW, Sun F, ''et al.'' |title=Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator. |journal=J. Biol. Chem. |volume=277 |issue= 32 |pages= 28948-58 |year= 2002 |pmid= 12039948 |doi= 10.1074/jbc.M111706200 }}
*{{cite journal  | vauthors=Evans GJ, Wilkinson MC, Graham ME |title=Phosphorylation of cysteine string protein by protein kinase A. Implications for the modulation of exocytosis. |journal=J. Biol. Chem. |volume=276 |issue= 51 |pages= 47877–85 |year= 2002 |pmid= 11604405 |doi= 10.1074/jbc.M108186200 |display-authors=etal}}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Deloukas P, Matthews LH, Ashurst J |title=The DNA sequence and comparative analysis of human chromosome 20. |journal=Nature |volume=414 |issue= 6866 |pages= 865–71 |year= 2002 |pmid= 11780052 |doi= 10.1038/414865a |display-authors=etal}}
*{{cite journal  | author=Miller LC, Swayne LA, Chen L, ''et al.'' |title=Cysteine string protein (CSP) inhibition of N-type calcium channels is blocked by mutant huntingtin. |journal=J. Biol. Chem. |volume=278 |issue= 52 |pages= 53072-81 |year= 2004 |pmid= 14570907 |doi= 10.1074/jbc.M306230200 }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | vauthors=Miller LC, Swayne LA, Chen L |title=Cysteine string protein (CSP) inhibition of N-type calcium channels is blocked by mutant huntingtin |journal=J. Biol. Chem. |volume=278 |issue= 52 |pages= 53072–81 |year= 2004 |pmid= 14570907 |doi= 10.1074/jbc.M306230200 |display-authors=etal}}
*{{cite journal  | author=Giorgianni F, Beranova-Giorgianni S, Desiderio DM |title=Identification and characterization of phosphorylated proteins in the human pituitary. |journal=Proteomics |volume=4 |issue= 3 |pages= 587-98 |year= 2004 |pmid= 14997482 |doi= 10.1002/pmic.200300584 }}
*{{cite journal  | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | vauthors=Giorgianni F, Beranova-Giorgianni S, Desiderio DM |title=Identification and characterization of phosphorylated proteins in the human pituitary |journal=Proteomics |volume=4 |issue= 3 |pages= 587–98 |year= 2004 |pmid= 14997482 |doi= 10.1002/pmic.200300584 }}
*{{cite journal  | author=Boal F, Zhang H, Tessier C, ''et al.'' |title=The variable C-terminus of cysteine string proteins modulates exocytosis and protein-protein interactions. |journal=Biochemistry |volume=43 |issue= 51 |pages= 16212-23 |year= 2005 |pmid= 15610015 |doi= 10.1021/bi048612+ }}
*{{cite journal  | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}}
*{{cite journal  | author=Natochin M, Campbell TN, Barren B, ''et al.'' |title=Characterization of the G alpha(s) regulator cysteine string protein. |journal=J. Biol. Chem. |volume=280 |issue= 34 |pages= 30236-41 |year= 2005 |pmid= 15972823 |doi= 10.1074/jbc.M500722200 }}
*{{cite journal  | vauthors=Boal F, Zhang H, Tessier C |title=The variable C-terminus of cysteine string proteins modulates exocytosis and protein-protein interactions |journal=Biochemistry |volume=43 |issue= 51 |pages= 16212–23 |year= 2005 |pmid= 15610015 |doi= 10.1021/bi048612+|display-authors=etal}}
*{{cite journal  | author=Zhang H, Schmidt BZ, Sun F, ''et al.'' |title=Cysteine string protein monitors late steps in cystic fibrosis transmembrane conductance regulator biogenesis. |journal=J. Biol. Chem. |volume=281 |issue= 16 |pages= 11312-21 |year= 2006 |pmid= 16469739 |doi= 10.1074/jbc.M512013200 }}
*{{cite journal  | vauthors=Natochin M, Campbell TN, Barren B |title=Characterization of the G alpha(s) regulator cysteine string protein |journal=J. Biol. Chem. |volume=280 |issue= 34 |pages= 30236–41 |year= 2005 |pmid= 15972823 |doi= 10.1074/jbc.M500722200 |display-authors=etal}}
*{{cite journal  | author=Chi A, Valencia JC, Hu ZZ, ''et al.'' |title=Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. |journal=J. Proteome Res. |volume=5 |issue= 11 |pages= 3135-44 |year= 2007 |pmid= 17081065 |doi= 10.1021/pr060363j }}
*{{cite journal  | vauthors=Zhang H, Schmidt BZ, Sun F |title=Cysteine string protein monitors late steps in cystic fibrosis transmembrane conductance regulator biogenesis |journal=J. Biol. Chem. |volume=281 |issue= 16 |pages= 11312–21 |year= 2006 |pmid= 16469739 |doi= 10.1074/jbc.M512013200 |display-authors=etal}}
}}
*{{cite journal  | vauthors=Chi A, Valencia JC, Hu ZZ |title=Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes |journal=J. Proteome Res. |volume=5 |issue= 11 |pages= 3135–44 |year= 2007 |pmid= 17081065 |doi= 10.1021/pr060363j |display-authors=etal}}
{{refend}}
{{refend}}


{{protein-stub}}
==External links ==
{{WikiDoc Sources}}
* [https://www.ncbi.nlm.nih.gov/books/NBK1428/  GeneReviews/NCBI/NIH/UW entry on Neuronal Ceroid-Lipofuscinosis]
 
{{PDB Gallery|geneid=80331}}
{{Chaperones}}
 
[[Category:Heat shock proteins]]

Revision as of 19:45, 8 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

DnaJ homolog subfamily C member 5, also known as cysteine string protein or CSP is a protein, that in humans encoded by the DNAJC5 gene.[1] It was first described in 1990.[2]

Gene

In humans, the gene is located on the long arm of chromosome 20 (20q13.33) on the Watson (positive strand). The gene is 40,867 bases in length and the encoded protein has 198 amino acids with a predicted molecular weight of 22.149 kiloDaltons (kDa). The weight of the mature protein is 34kDa.

This gene is highly conserved and found both in invertebrates and vertebrates. In humans, a pseudogene of this gene is located on the short arm of chromosome 8.

Structure

The organisation of the protein is as follows:[3]

Tissue distribution

This protein is abundant in neural tissue and displays a characteristic localization to synaptic and clathrin coated vesicles. It is also found on secretory vesicles in endocrine, neuroendocrine and exocrine cells. This protein makes up ~1% of the protein content of the synaptic vesicles.[4] DNAJC5 appears to have a role in stimulated exocytosis.[5]

Function

The encoded protein is a member of the J protein family. These proteins function in many cellular processes by regulating the ATPase activity of 70 kDa heat shock proteins (Hsp70). DNAJC5 is a guanine nucleotide exchange factor for Gα proteins.[6] CSPα plays a role in membrane trafficking and protein folding, and has been shown to have anti-neurodegenerative properties. It is known to play a role in cystic fibrosis and Huntington's disease.[1]

This protein has been proposed as a key element of the synaptic molecular machinery devoted to the rescue of synaptic proteins that have been unfolded by activity dependent stress.[7][8] Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, forms a complex with CSPα, a G protein and an N-type calcium channel. Huntingtin may be able displace both syntaxin 1A and CSPα from N-type channels.[9] CSP interacts with the calcium sensor protein synaptotagmin 9 via its linker domain.[10]

Huntingtin-interacting protein 14, a palmitoyl transferase, is required for exocytosis and targeting of CSP to synaptic vesicles. The palmitoyl residues are transferred to the cysteine residues. If these resides are mutated membrane targeting is reduced or lost.[11] The rat CSP forms a complex with Sgt (SGTA) and Hsc70 (HSPA8) located on the synaptic vesicle surface. This complex functions as an ATP-dependent chaperone that reactivates denatured substrates. Furthermore, the Csp/Sgt/Hsc70 complex appears to be important for maintenance of normal synapses.[3]

Its expression may be increased with the use of lithium.[12] Quercetin promotes formation of stable CSPα-CSPα dimers.[13]

Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis.[14]

Interactions

DNAJC5 has been shown to interact with the cystic fibrosis transmembrane conductance regulator.[15]

Clinical significance

Mutations in this gene may cause neuronal ceroid lipofuscinosis.[16]

References

  1. 1.0 1.1 "Entrez Gene: DNAJC5 DnaJ (Hsp40) homolog, subfamily C, member 5".
  2. Zinsmaier KE, Hofbauer A, Heimbeck G, Pflugfelder GO, Buchner S, Buchner E (November 1990). "A cysteine-string protein is expressed in retina and brain of Drosophila". J. Neurogenet. 7 (1): 15–29. doi:10.3109/01677069009084150. PMID 2129171.
  3. 3.0 3.1 Tobaben S, Thakur P, Fernández-Chacón R, Südhof TC, Rettig J, Stahl B (September 2001). "A trimeric protein complex functions as a synaptic chaperone machine". Neuron. 31 (6): 987–99. doi:10.1016/S0896-6273(01)00427-5. PMID 11580898.
  4. Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, Morris JC, Sands MS, Goate A, Cruchaga C (2011). "Exome-Sequencing Confirms DNAJC5 Mutations as Cause of Adult Neuronal Ceroid-Lipofuscinosis". PLoS ONE. 6 (11): e26741. doi:10.1371/journal.pone.0026741. PMC 3208569. PMID 22073189.
  5. Ranjan R, Bronk P, Zinsmaier KE (February 1998). "Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling". J. Neurosci. 18 (3): 956–64. PMID 9437017.
  6. Bai L, Swayne LA, Braun JE (January 2007). "The CSPalpha/G protein complex in PC12 cells". Biochem. Biophys. Res. Commun. 352 (1): 123–9. doi:10.1016/j.bbrc.2006.10.178. PMID 17113038.
  7. Fernández-Chacón R, Wölfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Muñoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Südhof TC (April 2004). "The synaptic vesicle protein CSP alpha prevents presynaptic degeneration". Neuron. 42 (2): 237–51. doi:10.1016/S0896-6273(04)00190-4. PMID 15091340.
  8. Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC (November 2005). "Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration". Cell. 123 (3): 383–96. doi:10.1016/j.cell.2005.09.028. PMID 16269331.
  9. Swayne LA, Beck KE, Braun JE (September 2006). "The cysteine string protein multimeric complex". Biochem. Biophys. Res. Commun. 348 (1): 83–91. doi:10.1016/j.bbrc.2006.07.033. PMID 16875662.
  10. Boal F, Laguerre M, Milochau A, Lang J, Scotti PA (January 2011). "A charged prominence in the linker domain of the cysteine-string protein Cspα mediates its regulated interaction with the calcium sensor synaptotagmin 9 during exocytosis". FASEB J. 25 (1): 132–43. doi:10.1096/fj.09-152033. PMID 20847230.
  11. Chamberlain LH, Burgoyne RD (October 1998). "The cysteine-string domain of the secretory vesicle cysteine-string protein is required for membrane targeting". Biochem. J. 335 (2): 205–9. PMC 1219770. PMID 9761715.
  12. Cordeiro ML, Umbach JA, Gundersen CB (June 2000). "Lithium ions enhance cysteine string protein gene expression in vivo and in vitro". J. Neurochem. 74 (6): 2365–72. doi:10.1046/j.1471-4159.2000.0742365.x. PMID 10820197.
  13. Xu F, Proft J, Gibbs S, Winkfein B, Johnson JN, Syed N, Braun JE (2010). "Quercetin targets cysteine string protein (CSPalpha) and impairs synaptic transmission". PLoS ONE. 5 (6): e11045. doi:10.1371/journal.pone.0011045. PMC 2883571. PMID 20548785.
  14. Dawson-Scully K, Bronk P, Atwood HL, Zinsmaier KE (August 2000). "Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis in Drosophila". J. Neurosci. 20 (16): 6039–47. PMID 10934253.
  15. Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA (August 2002). "Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator". J. Biol. Chem. 277 (32): 28948–58. doi:10.1074/jbc.M111706200. PMID 12039948.
  16. Nosková L, Stránecký V, Hartmannová H, Přistoupilová A, Barešová V, Ivánek R, Hůlková H, Jahnová H, van der Zee J, Staropoli JF, Sims KB, Tyynelä J, Van Broeckhoven C, Nijssen PC, Mole SE, Elleder M, Kmoch S (August 2011). "Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis". American Journal of Human Genetics. 89 (2): 241–52. doi:10.1016/j.ajhg.2011.07.003. PMC 3155175. PMID 21820099.

Further reading

External links