Sandbox: Reddy: Difference between revisions

Jump to navigation Jump to search
Line 303: Line 303:
<small>Table adopted from Laboratory Diagnosis of Congenital Toxoplasmosis<ref name="PomaresMontoya2016">{{cite journal|last1=Pomares|first1=Christelle|last2=Montoya|first2=Jose G.|last3=Kraft|first3=C. S.|title=Laboratory Diagnosis of Congenital Toxoplasmosis|journal=Journal of Clinical Microbiology|volume=54|issue=10|year=2016|pages=2448–2454|issn=0095-1137|doi=10.1128/JCM.00487-16}}</ref> </small>
<small>Table adopted from Laboratory Diagnosis of Congenital Toxoplasmosis<ref name="PomaresMontoya2016">{{cite journal|last1=Pomares|first1=Christelle|last2=Montoya|first2=Jose G.|last3=Kraft|first3=C. S.|title=Laboratory Diagnosis of Congenital Toxoplasmosis|journal=Journal of Clinical Microbiology|volume=54|issue=10|year=2016|pages=2448–2454|issn=0095-1137|doi=10.1128/JCM.00487-16}}</ref> </small>


===Interpretation of Serological Tests===
==Interpretation of Serological Tests==
{{familytree/start}}
{{familytree/start}}
{{familytree | | | | | | | | | A01 | | | | | | | | | | | | | | | |A01=IgG/IgM(ideally performed in the first trimester}}
{{familytree | | | | | | | | | A01 | | | | | | | | | | | | | | | |A01=IgG/IgM(ideally performed in the first trimester}}

Revision as of 20:20, 25 January 2017


Congenital Toxoplasmosis

Overview

Toxoplasmosis is a part of TORCH group of infections which includes Rubella, Cytomegalovirus, Herpes virus. These can be transmitted from the mother to the fetus during pregnancy and cause congenital infections leading to permanent disability in the fetus and fetus loss in severe cases. The other three causes of congenital infections are viruses whereas Toxoplasma is a protozoan parasite.

Historical Perspective

  • In 1908, Nicolle and Manceaux described the parasite in the blood, spleen and liver of a North African rodent–gundi (Ctenodactylus gundi), due to its similar appearance as leishmania they named it Leishmania gondii.[1]
  • In 1909, Nicolle and Manceaux renamed the parasite as T. gondii.[2]
  • In 1937, Sabin & Olitsky described that Toxoplasma was an obligate intracellular parasite and could be passed onto laboratory animals by intracranial, subcutaneous, intraperitoneal inoculation of brain homogenates (The slurry of tissues and cells which results when cell structure has been mechanically disrupted). They have also suggested that ingestion of Toxoplasma contaminated tissue can result in Toxoplasmosis.[3]
  • In 1937 to 1940, Wolf and Cowen have described necrotic and granulomatous lesions on autopsy of a 3 day old infant's brain infected with Toxoplasma. They have also reported that the mothers were asymptomatic but carried antibodies against Toxoplasma and the possibility of congenital transmission was expressed.[4][5]
  • In 1940, Pinkerton and Weinman reported the first fatal case of Toxoplasmosis in an adult.[6]
  • In 1948, Sabin and Feldman developed a serological test to identify infected individuals by using antibodies specific to Toxoplasma, called the Sabin Feldman Dye test. The serological test when used in large population studies showed a high proportion of humans and domestic animals carried antibodies against Toxoplasma.[7]
  • In 1965, Desmonts described that ingestion of under-cooked and uncooked meat plays a role in the pathogenesis of Toxoplasmosis.[8]
  • In 1970, Dubley described the life cycle of the parasite and established that the cats are the definitive hosts and any warm blooded animal can be an intermediate host.[9][10][11]

Classification

There is no classification system for Congenital Toxoplasmosis.

Pathophysiology

Pathogenesis

Infective stages of the Parasite

The three infective stages of T. gondii include:

  • Tachyzoite: It is the rapidly dividing and invasive form, can invade any vertebrate cell type
  • Bradyzoite: These result from the conversion from tachyzoites, they are slowly diving form, and are present in the tissue cysts which can remain in the host throughout the lifetime
  • Sporozoite: It is the environmental form present in the oocyts

Mechanism of cell Invasion

  • The initial step of invasion is attachment of the tachyzoite to the host cell membrane. A set of protiens help in the adherence and penetration of the host cell membrane, also enhance the growth and virulence of the parasite.
  • In the host cell the parasite forms a vacuole where it divides for 6 to 9 cycles after which the parasites are released into the circulation. It is an active process which is dependent on the increase in intracellular calcium stores.

Pathogenesis of Vertical Transmission

  • Different modes of transmission of T.gondii to have a primary infection in a healthy mother include:
    • Ingestion of tissue cysts from raw meat and uncooked meat.
    • Ingestion of food, fruits, vegetables or water contaminated by oocysts in the cat feces.
    • Infection after a solid organ transplant, heart transplant patients are at the highest risk as it can contain tissue cysts.
  • Once the patient has a primary infection with tachyzoites in the blood stream during pregnancy a possible transplacental infection can take place.[12]
  • The tachyzoites colonize in the placenta and can cross the barrier to reach the fetus in 30% of cases leading to the disease.[13]
  • The frequency of transmission of the tachyzoites to the fetus is related to the gestational age, with low transmission rates in the first trimester (10-15%) and highest transmission rates in the third trimester(60-90%). However the disease is more severe if the infection is acquired early in the pregnancy.[14]
  • The factors influencing the transfer of tachyzoites to the fetus is not well understood.

Gross Pathology

Microscopic Pathology

  • Brain autopsy in patients with congenital diagnosis demonstrates periaqueductal and periventricular vasculitis with necrosis.[15][16]

Causes

Congenital Toxoplasmosis is caused by a coccidian parasite Toxoplasma gondii. The infective tachyzoites reach the fetus by transplacental route.

Differentiating Toxoplasmosis from other Diseases

The most important congenital infections, which can be transmitted vertically from mother to fetus are the TORCH infections. These infections have overlapping features and hence, must be differentiated from Toxoplasmosis  :[17][18]

Congenital Infection Cardiac Findings Skin Findings Ocular Findings Hepatosplenomegaly Hydrocephalus Microcephaly Intracranial Calcifications Hearing deficits
Toxoplasmosis Diffuse intracranial calcifications
Treponema pallidum
Rubella
Cytomegalovirus (CMV) Periventricular calcifications
Herpes simplex virus (HSV)
Parvovirus B19

Epidemiology, Demographics

Prevalence

  • It is estimated that 25 to 30% of the world's population is infected with Toxoplasma.[19]
  • In United States 89% of women in the childbearing age are susceptible to have an acute infection and at risk for transmitting the parasite to the baby if the primary infection occurs during the getational period.[20]
  • In United States the age adjusted seroprevalence rate is 22.5%. There is significant variation in the distribution with highest prevalence reported in the North-eastern states and lowest in the western states.[21]
  • In countries such as North America, Northern Europe and in Sahelian countries of Africa low seroprevalences of 10% to 30% are observed. In countries of Central and Southern Europe, tropical African countries and Latin America the seroprevalence is around 30 to 50%. This shows the variation within the countries and as well as between the countries.[22]

Incidence

  • Toxoplasmosis affects 500 to 4000 new borns every year.[23][24]
  • In United States, Toxoplasmosis affects 1.1 million people every year.[25]

Race

  • The prevalence of Toxoplasmosis is higher in non-Hispanic black population and Mexican Americans than non-Hispanic white population.[26]

Age

  • A decreasing trend in prevalence is reported in the population of U.S born persons aged between 12 to 49 years; with 14% between the years 1988 to 1994, and 9% in the years 1999 to 2004. This trend is attributed to the improvement of hygienic conditions, changes in farming systems, the consumption of frozen meat, and the feeding of cats with sterilized food.[26]
  • The similar decreasing trend of seroprevalence is been reported in France and Netherlands.[27][28]

Developing Countries

  • In countries with poor hygienic measures and using unfiltered surface water for consumption reported higher seroprevalence rates. In these countries the childhood population is at a higher risk of acquiring the infection, the mean age is reported to be 15 years.[29][30][31]

Risk Factors

The major risk factors for acquiring the infection is consuming raw meat and ingestion of food contaminated with Toxoplasma oocysts excreted in cat feces.
The risk factors which predispose pregnant women for primary infection include:

  • Consumption of raw oysters and clams[32]
  • Eating undercooked meat which includes pork, beef and lamb[33]
  • Drinking unpasteurized goat’s milk[34]
  • Exposure to kitten litter
  • Working with meat[35]
  • Low socioeconomic status[35]
  • Poor Hygiene[35]
  • Drinking unfiltered water[35]
  • Immunocompromised state

Screening

  • Majority of the countries do not follow standard screening for the detection of Toxoplasma infection during the antenatal period.
  • In countries such as France, Austria, Brazil standard screening is followed during the antenatal period for detecton of toxoplasmosis .[36]
  • Women are tested for antibodies aganist Toxoplasma on their first antenatal visit, and if they are seropositive they are followed up periodically in every trimester to examine the trends in IgG tite levels.[37]
  • Women who seroconvert during gestation, fetal testing by amniocentesis and fetal blood sampling is recommended to identify the infection status in the fetus.

Natural History, Complications, Prognosis

Natural History

Congenital Toxoplasmosis is due to transplacental transmission of infective tachyzoites to the developing fetus. The severity of clinical manifestation is dependent on the timing of the infection during gestation. Early gestational infection results in a miscarriage, still birth or a new born with neurological abnormalities. Late gestational infection is asymptomatic in majority of children at birth but they develop neurological abnormalities and vision changes in the 1st or 2nd decade.[38]

Complications

If left untreated congenital Toxoplasmosis results in mental retardation, seizures, motor difficulties, severe vision loss, hydro or microcephalus and hearing loss.[39]

Prognosis

Prognosis of congenital Toxoplasmosis is dependent on the severity of the disease. Severe infection causes death at an early age, asymptomatic infection at birth will present in the 1st or 2nd decade with progressive chorioretinitis with poor prognosis.

Diagnosis

The presence of intracranial calcifications, hydrocephalus and chorioretinitis is a classic traid of congenital Toxoplasmosis.

History and Symptoms

The severity of manifestations in the newborn are dependent on the fetal age when the infection occurred and the trimester of pregnancy the mother gets infected. The disease is severe in mothers who acquire infection in the first trimester.

Symptoms in the Mother

  • Acute infection of Toxoplasma in an asymptomatic women can be easily missed as they present with flu like symptoms, lymph node swelling in the neck and rarely a skin rash.
  • Early gestational infection results in a miscarriage or a still birth.

Symptoms in newborn

The clinical manifestations in the newborn are dependent on the month of gestation the infection has occurred - earlier the infection more severe the disease.

Infection in early pregnancy

Neuro-ocular symptoms are typical presenting features in Congenital Toxoplasmosis.

  • Involvement of the CNS can present with psycho-motor retardation and seizures.[40][41]
  • Chorioretinitis presents with impaired vision.
  • Obstruction in the ventricles results in accumalation of CSF, causing enlargement of the head and increased intracranial pressure symptoms such as vomiting, headache, confusion and double vision.[42][43]
  • Jaundice
  • Focal neurological deficits
  • Feeding difficulties
Infection later in the pregnancy
  • Majority of the infected newborns remain asymptomatic at birth.[40]
  • Children develop psycho-motor retardation and retinochoroiditis later in life.
  • Loss of vision is a common symptom and is seen in 95% of infants due to chorioretinitis.

Physical Examination

Laboratory Findings

Prenatal Diagnosis

  • During the period of gestation Toxoplasma is diagnosed by the presence of parasite in the amniotic fluid or in the fetal tissue by DNA amplification, microscopy or by isolation of the organism.[44]
  • The most commonly used diagnostic test is the PCR of the amniotic fluid and a positive test is diagnostic of congenital Toxoplasmosis.

Postnatal Diagnosis

The most commonly used diagnostic investigation for early dectection is the serological detection of antibodies (IgG, IgM and IgG) in the serum of the infant. A combination of all the antibodies is done as the maternal IgG can cross the placenta and give false positive result.

  • In the postnatal period the gold standard for diagnosis of Congenital Toxoplasmosis is the persistence of Toxoplasma IgG by 12months of age.
  • During the postnatal period the standard to rule out diagnosis is the the absence of Toxoplasma IgG at 12months of age in the absence of treatment.

Imaging Studies

  • Imaging studies such as CT and MRI of the brain demonstrate periventricular calcifications, hydrocephalus and microcephaly.

Principles and various methods used for the diagnosis of congenital toxoplasmosis:

Principle Detection Method Findings supporting the diagnosis of Toxoplasmosis
Toxoplasma specific humoral responses[45] IgG, IgM, IgA Dye test, ELISA, ELISA-like assays,ISAGA, immunofluorescence, agglutination
  • Positive IgM after 5 days of life and in the absence of blood transfusions
  • Positive IgA after 10 days of life
  • Persistence of Toxoplasma IgG beyond 1 year of age
IgG, IgM, and IgA to specific Toxoplasma antigen

Western blot

  • Presence of specific bands only seen in the newborn or bands with higher intensity than maternal ones for IgG and/or IgM and/or IgA in a reference laboratory
Toxoplasma nucleic acid amplification DNA PCR
  • Positive result in any body fluid (e.g: amniotic fluid, cerebrospinal fluid, peripheral blood, urine)
Immunohistochemistry of Toxoplasma specific antigens in tissue Antigens Immunoperoxidase
  • Positive result in any tissue(e.g., brain or other fetal tissue)
Visualization by microscopy Visual identification of tachyzoites and/or cysts Stains such as hematoxylin/eosin, Giemsa
  • Positive identification in a reference laboratory
Isolation of Toxoplasma Whole live parasite Inoculation in peritoneal cavity of mice
  • Detection of live cysts from any body fluid or tissue that has been inoculated in mice in a reference laboratory
Brain imaging
  • Brain calcifications
  • Hydrocephaly
  • Microcephaly

Ultrasound, CT, brain MRI

  • Findings can be suggestive but are not diagnostic of congenital Toxoplasmosis since other etiologies may result in similar findings
Retinal exam Inflammation in choroidal and retinal layers Ophthalmological exam
  • Retinochoroidal lesions can be highly suggestive or, at times, diagnostic of congenital Toxoplasmosis

Table adopted from Laboratory Diagnosis of Congenital Toxoplasmosis[46]

Interpretation of Serological Tests

Approach for the management of Congenital Toxoplasmosis

Approach during pregnancy with known seropositive status

Screening programs benefit the clinicians with information regarding maternal serological and amniotic fluid PCR test results, precise gestational age at which the mother was infected, and detailed anti-Toxoplasma treatment history which play a vital role in the management of congenital Toxoplasmosis.

 
 
 
 
 
 
 
 
IgG/IgM(ideally performed in the first trimester
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Negative IgG and IgM
 
Positive IgG
Negative IgM
 
Positive IgM
Negative IgG
 
Positive IgG and IgM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No serologic evidence of Toxoplasma infection
Risk of congenital Toxoplasmosis only if the woman aquires infection during the pregnancy
Counsel about the preventive measures for T.gondii
 
<18 weeks of gestation Infection aquired in the past and prior to the pregnancy
Risk of infection is zero unless the patient is immunocompromised
≥18 weeks of gestationIt is difficult to establish the timing of infection
 
Repeat IgG and IgM in 1 to 3weeks
 
Serum should be sent to reference laboratory for confirmatory testing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Follow up testing is indicated during gestation to detect seroconversion
 
≤ 18 weeks of gestation
No further action indicated
>18 weeks of gestationCompare to previous serological tests
 
Negative IgG and Positive IgM
Does not have clinical relevance
 
 
 
 
 
 
 
 
 
Positive IgG and IgM
Seroconverted and fetus is at risk
Initiate treatment and consider PCR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Maternal Infection Status
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
❑ No maternal infection acquired during pregnancy and remains seronegative one month after birth or
❑ Maternal infection acquired prior to pregnancy
 
 
 
 
❑ Maternal infection acquired during pregnancy and
❑ Positive PCR of amniotic fluid
 
 
 
 
❑ Maternal infection acquired during the pregnancy and a negative amniotic fluid PCR or
❑ Amniocentesis was not done
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No Infant Follow up
 
 
 
 
Confirmed diagnosis of Congenital Toxoplasmosis
 
 
 
 
❑ Testing for IgG, IgM, IgA at birth by Western blot or by conventional serologies at ≥ 10 days of life
❑ If diagnosis not made at initial testing, follow up testing with IgG, IgM, IgA at 1 month age and every 2 months thereafter is indicated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
❑ Initiate Treatment and
❑ Order a serological test for IgG, IgM and IgA to further confirm the diagnosis and to rule out a false positive PCR test result
 
Presence of any one of the below criteria is diagnostic of congenital Toxoplasmosis:
❑ Presence of IgM and/or IgA ≥ 10 days of life and/or during the follow up test samples
❑ In new born presence of specific band or bands with higher intensity than maternal ones for IgG/IgM/IgA on Western blot
❑ Persistant increase in IgG titer without treatment ≤ 12months of age
 
 
 
❑ Diagnosis of Toxoplasma is excluded if:
❑ The absence of IgG titer without treatment is documented ≤ 12months of age
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
❑ Confirmed diagnosis of Congenital Toxoplasmosis
❑ Inititate Treatment
 
 
 
Diagnosis exlcuded

Approach to the patient with unknown Toxoplasma serology status

 
 
 
 
 
 
 
 
❑ Suspicion of acquired infection and/or
❑ Clinical signs at birth
❑ As antenatal screening is not performed during gestation, parallel testing of maternal serum with the newborn serum should be done
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
❑ Maternal serum is Toxoplasma seronegative at birth and confirmed to remain negative 1 month after birth or
❑ Confirmation of maternal infection acquired prior to gestation
 
 
 
 
❑ PCR of CSF, urine, whole blood depending on the clinical signs in the baby
 
 
 
 
❑ Testing for IgG, IgM, IgA by conventional serologies ≥10 days of life
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No infant follow up
 
Positive
 
 
Negative
 
If diagnosis is not made on the initial testing
 
Presence of IgG plus IgM and/or IgA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
❑ Confirmed Diagnosis
❑ Initiate Treatment
 
 
 
 
 
❑ Follow up testing with IgG, IgM, IgA at 1 month age and every 2 months thereafter is indicated
 
 
 
❑ Confirmed Diagnosis
❑ Initiate Treatment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Presence of any one of the below criteria is diagnostic of congenital Toxoplasmosis:
❑ Presence of IgM and/or IgA >10 days of life and/or during the follow up test samples
❑ Persistant increase in IgG titer without treatment ≤12months of age
 
 
 
❑ Diagnosis of Toxoplasma is excluded if:
❑ The absence of IgG titer without treatment is documented ≤ 12months of age
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
❑ Confirmed Diagnosis of Congenital Toxoplasmosis
❑ Initiate Treatment
 
 
 
 
Diagnosis Excluded

Treatment

Medical Therapy

The principle for medical therapy of Congenital Toxoplasmosis is based on the timing of diagnosis.

  • Pregnant women diagnosed with primary Toxoplasma infection: Spiramycin should be initiated and identification of infection status in the fetus by amniocentesis and fetal blood sampling should be done. If fetal infection is ruled out, spiramycin should be continued throughout the pregnancy.[47][48]
  • In patients with established fetal infection: Pyrimethamine, sulfadiazine, and folinic acid should be given throughout the pregnancy and is shown to decrease infection of the placenta and the fetus in utero, the neurological sequalae and ocular symptoms.[49][50]However, it does not reduce the rate of transmission and the regimen is contraindicated in the first trimester of pregnancy due to the teratogenic effect.[51]
  • In infants with established infection, low or high dose pyrimethamine with sulfadiazine throughout the first year of life, showed better outcomes compared to untreated infants. [52][53]

Follow Up

  • Infants with congenital Toxoplasmosis should be followed up regularly to examine for presence of motor abnormalities, cognitive outcomes, vision impairment, formation of new eye lesions, and hearing loss.[54]

Surgical Therapy

There are no surgical management measures for the treatment of congenital Toxoplasmosis.

Prevention

Primary Prevention

Prevention is the best way to reduce the transmission of disease. The following are recommended by the CDC to reduce the risk of transmission of Toxoplasma from the environment.[55][56]

  • Avoid drinking untreated drinking water.
  • Wear gloves when gardening and during any contact with soil or sand because it might be contaminated with cat feces that contain Toxoplasma.
  • Wash hands with soap and warm water after gardening or contact with soil or sand.
  • Teach children the importance of washing hands to prevent infection.
  • Keep outdoor sandboxes covered.
  • Feed cats only canned or dried commercial food or well-cooked table food, not raw or undercooked meats.
  • Change the litter box daily if you own a cat. The Toxoplasma parasite does not become infectious until 1 to 5 days after it is shed in a cat's feces.
  • If you are pregnant or immunocompromised: Avoid changing cat litter if possible. If no one else can perform the task, wear disposable gloves and wash your hands with soap and warm water afterwards.
  • Keep cats indoors.
  • Do not adopt or handle stray cats, especially kittens. Do not get a new cat while you are pregnant.

Reducing the risk of transmission from meat

To prevent risk of toxoplasmosis from food:[57]

  • Cook food to safe temperatures. A food thermometer should be used to measure the internal temperature of cooked meat. Do not sample meat until it is cooked.
  • For Whole Cuts of Meat (excluding poultry): Cook to at least 145° F (63° C) as measured with a food thermometer placed in the thickest part of the meat, then allow the meat to rest* for three minutes before carving or consuming.
  • For Ground Meat (excluding poultry): Cook to at least 160° F (71° C); ground meats do not require a rest time.
  • For All Poultry (whole cuts and ground): Cook to at least 165° F (74° C), and for whole poultry allow the meat to rest for three minutes before carving or consuming.

Secondary Prevention

  • Countries such as France and Austria recommend prenatal screening for Toxoplasma, by antibody measurement in the pregnant mother to establish the status of infection. [58]
  • Pregnant women with active infection are treated with spiramycin, it is shown to reduce the transplacental transmission by 60%.[59]

References

  1. Weiss LM, Dubey JP (2009). "Toxoplasmosis: A history of clinical observations". Int J Parasitol. 39 (8): 895–901. doi:10.1016/j.ijpara.2009.02.004. PMC 2704023. PMID 19217908.
  2. Weiss LM, Dubey JP (2009). "Toxoplasmosis: A history of clinical observations". Int J Parasitol. 39 (8): 895–901. doi:10.1016/j.ijpara.2009.02.004. PMC 2704023. PMID 19217908.
  3. Heath, Parker (1945). "TOXOPLASMOSIS". Archives of Ophthalmology. 33 (3): 184. doi:10.1001/archopht.1945.00890150028003. ISSN 0093-0326.
  4. Paige, Beryl H. (1942). "TOXOPLASMIC ENCEPHALOMYELITIS". American Journal of Diseases of Children. 63 (3): 474. doi:10.1001/archpedi.1942.02010030044004. ISSN 0096-8994.
  5. Wolf A, Cowen D, Paige BH (1940). "TOXOPLASMIC ENCEPHALOMYELITIS : IV. EXPERIMENTAL TRANSMISSION OF THE INFECTION TO ANIMALS FROM A HUMAN INFANT". J Exp Med. 71 (2): 187–214. PMC 2135077. PMID 19870956.
  6. Weiss LM, Dubey JP (2009). "Toxoplasmosis: A history of clinical observations". Int J Parasitol. 39 (8): 895–901. doi:10.1016/j.ijpara.2009.02.004. PMC 2704023. PMID 19217908.
  7. Sabin AB, Feldman HA (1948). "Dyes as Microchemical Indicators of a New Immunity Phenomenon Affecting a Protozoon Parasite (Toxoplasma)". Science. 108 (2815): 660–3. doi:10.1126/science.108.2815.660. PMID 17744024.
  8. Desmonts G, Couvreur J, Alison F, Baudelot J, Gerbeaux J, Lelong M (1965). "[Epidemiological study on toxoplasmosis: the influence of cooking slaughter-animal meat on the incidence of human infection]". Rev Fr Etud Clin Biol (in French). 10 (9): 952–8. PMID 5853186.
  9. Dubey JP, Miller NL, Frenkel JK (1970). "Characterization of the new fecal form of Toxoplasma gondii". J Parasitol. 56 (3): 447–56. PMID 5467864.
  10. Dubey JP, Miller NL, Frenkel JK (1970). "The Toxoplasma gondii oocyst from cat feces". J Exp Med. 132 (4): 636–62. PMC 2138867. PMID 4927658.
  11. Hutchison WM, Dunachie JF, Siim JC, Work K (1969). "Life cycle of toxoplasma gondii". Br Med J. 4 (5686): 806. PMC 1630290. PMID 5359949.
  12. Dunn D, Wallon M, Peyron F, Petersen E, Peckham C, Gilbert R (1999). "Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling". Lancet. 353 (9167): 1829–33. doi:10.1016/S0140-6736(98)08220-8. PMID 10359407.
  13. Robert-Gangneux F, Murat JB, Fricker-Hidalgo H, Brenier-Pinchart MP, Gangneux JP, Pelloux H (2011). "The placenta: a main role in congenital toxoplasmosis?". Trends Parasitol. 27 (12): 530–6. doi:10.1016/j.pt.2011.09.005. PMID 22079164.
  14. Dunn D, Wallon M, Peyron F, Petersen E, Peckham C, Gilbert R (1999). "Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling". Lancet. 353 (9167): 1829–33. doi:10.1016/S0140-6736(98)08220-8. PMID 10359407.
  15. FRENKEL JK (1949). "Pathogenesis, diagnosis and treatment of human toxoplasmosis". J Am Med Assoc. 140 (4): 369–77. PMID 18128617.
  16. Frenkel JK (1974). "Pathology and pathogenesis of congenital toxoplasmosis". Bull N Y Acad Med. 50 (2): 182–91. PMC 1749352. PMID 4592096.
  17. Neu N, Duchon J, Zachariah P (2015). "TORCH infections". Clin Perinatol. 42 (1): 77–103, viii. doi:10.1016/j.clp.2014.11.001. PMID 25677998.
  18. Ajij M, Nangia S, Dubey BS (2014). "Congenital rubella syndrome with blueberry muffin lesions and extensive metaphysitis". J Clin Diagn Res. 8 (12): PD03–4. doi:10.7860/JCDR/2014/10271.5293. PMC 4316306. PMID 25654000.
  19. Montoya JG, Liesenfeld O (2004). "Toxoplasmosis". Lancet. 363 (9425): 1965–76. doi:10.1016/S0140-6736(04)16412-X. PMID 15194258.
  20. Montoya JG, Remington JS (2008). "Management of Toxoplasma gondii infection during pregnancy". Clin Infect Dis. 47 (4): 554–66. doi:10.1086/590149. PMID 18624630.
  21. Jones JL, Kruszon-Moran D, Wilson M, McQuillan G, Navin T, McAuley JB (2001). "Toxoplasma gondii infection in the United States: seroprevalence and risk factors". Am J Epidemiol. 154 (4): 357–65. PMID 11495859.
  22. Pappas G, Roussos N, Falagas ME (2009). "Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis". Int J Parasitol. 39 (12): 1385–94. doi:10.1016/j.ijpara.2009.04.003. PMID 19433092.
  23. Jara M, Hsu HW, Eaton RB, Demaria A (2001). "Epidemiology of congenital toxoplasmosis identified by population-based newborn screening in Massachusetts". Pediatr Infect Dis J. 20 (12): 1132–5. PMID 11740319.
  24. Lopez A, Dietz VJ, Wilson M, Navin TR, Jones JL (2000). "Preventing congenital toxoplasmosis". MMWR Recomm Rep. 49 (RR-2): 59–68. PMID 15580732.
  25. "CDC - Toxoplasmosis - Epidemiology & Risk Factors".
  26. 26.0 26.1 Jones JL, Kruszon-Moran D, Sanders-Lewis K, Wilson M (2007). "Toxoplasma gondii infection in the United States, 1999 2004, decline from the prior decade". Am J Trop Med Hyg. 77 (3): 405–10. PMID 17827351.
  27. Villena I, Ancelle T, Delmas C, Garcia P, Brezin AP, Thulliez P; et al. (2010). "Congenital toxoplasmosis in France in 2007: first results from a national surveillance system". Euro Surveill. 15 (25). PMID 20587361.
  28. Hofhuis A, van Pelt W, van Duynhoven YT, Nijhuis CD, Mollema L, van der Klis FR; et al. (2011). "Decreased prevalence and age-specific risk factors for Toxoplasma gondii IgG antibodies in The Netherlands between 1995/1996 and 2006/2007". Epidemiol Infect. 139 (4): 530–8. doi:10.1017/S0950268810001044. PMID 20492743.
  29. Jones JL, Dubey JP (2010). "Waterborne toxoplasmosis--recent developments". Exp Parasitol. 124 (1): 10–25. doi:10.1016/j.exppara.2009.03.013. PMID 19324041.
  30. Ertug S, Okyay P, Turkmen M, Yuksel H (2005). "Seroprevalence and risk factors for toxoplasma infection among pregnant women in Aydin province, Turkey". BMC Public Health. 5: 66. doi:10.1186/1471-2458-5-66. PMC 1177966. PMID 15958156.
  31. Bahia-Oliveira LM, Jones JL, Azevedo-Silva J, Alves CC, Oréfice F, Addiss DG (2003). "Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil". Emerg Infect Dis. 9 (1): 55–62. doi:10.3201/eid0901.020160. PMC 2873742. PMID 12533282.
  32. Lindsay DS, Collins MV, Mitchell SM, Wetch CN, Rosypal AC, Flick GJ; et al. (2004). "Survival of Toxoplasma gondii oocysts in Eastern oysters (Crassostrea virginica)". J Parasitol. 90 (5): 1054–7. doi:10.1645/GE-296R. PMID 15562605.
  33. Dubey JP, Jones JL (2008). "Toxoplasma gondii infection in humans and animals in the United States". Int J Parasitol. 38 (11): 1257–78. doi:10.1016/j.ijpara.2008.03.007. PMID 18508057.
  34. Jones, Jeffrey L.; Dargelas, Valerie; Roberts, Jacquelin; Press, Cindy; Remington, Jack S.; Montoya, Jose G. (2009). "Risk Factors forToxoplasma gondiiInfection in the United States". Clinical Infectious Diseases. 49 (6): 878–884. doi:10.1086/605433. ISSN 1058-4838.
  35. 35.0 35.1 35.2 35.3 Robert-Gangneux, F.; Darde, M.-L. (2012). "Epidemiology of and Diagnostic Strategies for Toxoplasmosis". Clinical Microbiology Reviews. 25 (2): 264–296. doi:10.1128/CMR.05013-11. ISSN 0893-8512.
  36. Doğan K, Kafkaslı A, Karaman U, Atambay M, Karaoğlu L, Colak C (2012). "[The rates of seropositivity and seroconversion of toxoplasma infection in pregnant women]". Mikrobiyol Bul. 46 (2): 290–4. PMID 22639318.
  37. Berghold, Christian; Herzog, Sereina Annik; Jakse, Heidelinde; Berghold, Andrea (2016). "Prevalence and incidence of toxoplasmosis: a retrospective analysis of mother-child examinations, Styria, Austria, 1995 to 2012". Eurosurveillance. 21 (33). doi:10.2807/1560-7917.ES.2016.21.33.30317. ISSN 1025-496X.
  38. Jones JL, Lopez A, Wilson M, Schulkin J, Gibbs R (2001). "Congenital toxoplasmosis: a review". Obstet Gynecol Surv. 56 (5): 296–305. PMID 11333376.
  39. Webster, Joanne P.; Stillwaggon, Eileen; Carrier, Christopher S.; Sautter, Mari; McLeod, Rima (2011). "Maternal Serologic Screening to Prevent Congenital Toxoplasmosis: A Decision-Analytic Economic Model". PLoS Neglected Tropical Diseases. 5 (9): e1333. doi:10.1371/journal.pntd.0001333. ISSN 1935-2735.
  40. 40.0 40.1 COUVREUR J, DESMONTS G (1962). "Congenital and maternal toxoplasmosis. A review of 300 congenital cases". Dev Med Child Neurol. 4: 519–30. PMID 14023494.
  41. Saxon SA, Knight W, Reynolds DW, Stagno S, Alford CA (1973). "Intellectual deficits in children born with subclinical congenital toxoplasmosis: a preliminary report". J Pediatr. 82 (5): 792–7. PMID 4698952.
  42. Chen KT, Eskild A, Bresnahan M, Stray-Pedersen B, Sher A, Jenum PA (2005). "Previous maternal infection with Toxoplasma gondii and the risk of fetal death". Am J Obstet Gynecol. 193 (2): 443–9. doi:10.1016/j.ajog.2004.12.016. PMID 16098868.
  43. Hutson, Samuel L.; Wheeler, Kelsey M.; McLone, David; Frim, David; Penn, Richard; Swisher, Charles N.; Heydemann, Peter T.; Boyer, Kenneth M.; Noble, A. Gwendolyn; Rabiah, Peter; Withers, Shawn; Montoya, Jose G.; Wroblewski, Kristen; Karrison, Theodore; Grigg, Michael E.; McLeod, Rima (2015). "Patterns of Hydrocephalus Caused by CongenitalToxoplasma gondiiInfection Associate With Parasite Genetics". Clinical Infectious Diseases. 61 (12): 1831–1834. doi:10.1093/cid/civ720. ISSN 1058-4838.
  44. Foulon W, Pinon JM, Stray-Pedersen B, Pollak A, Lappalainen M, Decoster A; et al. (1999). "Prenatal diagnosis of congenital toxoplasmosis: a multicenter evaluation of different diagnostic parameters". Am J Obstet Gynecol. 181 (4): 843–7. PMID 10521739.
  45. Tanimura K, Nishikawa A, Tairaku S, Shinozaki N, Deguchi M, Morizane M; et al. (2015). "The IgG avidity value for the prediction of Toxoplasma gondii infection in the amniotic fluid". J Infect Chemother. 21 (9): 668–71. doi:10.1016/j.jiac.2015.05.013. PMID 26141811.
  46. Pomares, Christelle; Montoya, Jose G.; Kraft, C. S. (2016). "Laboratory Diagnosis of Congenital Toxoplasmosis". Journal of Clinical Microbiology. 54 (10): 2448–2454. doi:10.1128/JCM.00487-16. ISSN 0095-1137.
  47. Matsui D (1994). "Prevention, diagnosis, and treatment of fetal toxoplasmosis". Clin Perinatol. 21 (3): 675–89. PMID 7982341.
  48. Cortina-Borja M, Tan HK, Wallon M, Paul M, Prusa A, Buffolano W; et al. (2010). "Prenatal treatment for serious neurological sequelae of congenital toxoplasmosis: an observational prospective cohort study". PLoS Med. 7 (10). doi:10.1371/journal.pmed.1000351. PMC 2953528. PMID 20967235.
  49. Paquet C, Yudin MH, Society of Obstetricians and Gynaecologists of Canada (2013). "Toxoplasmosis in pregnancy: prevention, screening, and treatment". J Obstet Gynaecol Can. 35 (1): 78–81. PMID 23343802.
  50. Thulliez P (2001). "Commentary: Efficacy of prenatal treatment for toxoplasmosis: a possibility that cannot be ruled out". Int J Epidemiol. 30 (6): 1315–6. PMID 11821337.
  51. Foulon W, Villena I, Stray-Pedersen B, Decoster A, Lappalainen M, Pinon JM; et al. (1999). "Treatment of toxoplasmosis during pregnancy: a multicenter study of impact on fetal transmission and children's sequelae at age 1 year". Am J Obstet Gynecol. 180 (2 Pt 1): 410–5. PMID 9988811.
  52. McAuley J, Boyer KM, Patel D, Mets M, Swisher C, Roizen N; et al. (1994). "Early and longitudinal evaluations of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago Collaborative Treatment Trial". Clin Infect Dis. 18 (1): 38–72. PMID 8054436.
  53. Binquet C, Wallon M, Quantin C, Kodjikian L, Garweg J, Fleury J; et al. (2003). "Prognostic factors for the long-term development of ocular lesions in 327 children with congenital toxoplasmosis". Epidemiol Infect. 131 (3): 1157–68. PMC 2870066. PMID 14959784.
  54. McLeod R, Boyer K, Karrison T, Kasza K, Swisher C, Roizen N; et al. (2006). "Outcome of treatment for congenital toxoplasmosis, 1981-2004: the National Collaborative Chicago-Based, Congenital Toxoplasmosis Study". Clin Infect Dis. 42 (10): 1383–94. doi:10.1086/501360. PMID 16619149.
  55. "CDC - Toxoplasmosis - Prevention & Control".
  56. Foulon W, Naessens A, Ho-Yen D (2000). "Prevention of congenital toxoplasmosis". J Perinat Med. 28 (5): 337–45. doi:10.1515/JPM.2000.043. PMID 11125923.
  57. "CDC - Toxoplasmosis - Prevention & Control".
  58. Daffos F, Forestier F, Capella-Pavlovsky M, Thulliez P, Aufrant C, Valenti D; et al. (1988). "Prenatal management of 746 pregnancies at risk for congenital toxoplasmosis". N Engl J Med. 318 (5): 271–5. doi:10.1056/NEJM198802043180502. PMID 3336419.
  59. Hohlfeld P, Daffos F, Thulliez P, Aufrant C, Couvreur J, MacAleese J; et al. (1989). "Fetal toxoplasmosis: outcome of pregnancy and infant follow-up after in utero treatment". J Pediatr. 115 (5 Pt 1): 765–9. PMID 2681638.

Template:WH Template:WS