Pulseless electrical activity resident survival guide

Jump to navigation Jump to search

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mahmoud Sakr, M.D. [2]

Overview

Pulseless electrical activity (PEA) is defined as the presence of spontaneous organized cardiac electric activity in the absence of blood flow sufficient to maintain consciousness and absence of a rapid spontaneous return of adequate organ perfusion and consciousness.

Causes

Life Threatening Causes

Pulseless electrical activity is a life-threatening condition and must be treated as such irrespective of the causes. Life-threatening conditions can result in death or permanent disability within 24 hours if left untreated.

Common Causes

The complete list of causes of PEA can be remembered using the mnemonic "The Hs and Ts".[1][2][3]

As noted by repeated balloon inflations in the cardiac catheterization laboratory, transient occlusion of the coronary artery does not cause PEA.

Management

Below is an algorithm summarizing the approach to a patient with pulseless electrical activity.[4]


 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pulseless electrical activity
[5]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Start CPR for 2 minutes
Give oxygen
Attach monitor and defibrillator
IV/IO access
Epinephrine Q3-5 min
Consider advanced airway, capnography
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rhythm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shockable
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Non-shockable
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
See VF/VT algorithm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CPR for 2 minutes
Treat Hs&Ts
Epinephrine Q3-5min
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rhythm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shockable
 
 
 
 
 
 
 
 
 
 
 
 
 
Non-shockable
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ROSC(return of spontaneous circulation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Post–Cardiac Arrest Care
 
 
 
 
 
 
 
 

The algorithm is based on the 2010 American Heart Association ACLS algorithm for PEA.[6]

Do's

  • Efficiency of CPR can be determined by
    • Monitoring of chest compression rate and depth
    • Adequacy of chest wall relaxation
    • Length and duration of pauses in compression and number and depth of ventilations delivered
    • Physiologic parameters; partial pressure of end-tidal CO2 [PETCO2], arterial pressure during the relaxation phase of chest compressions, central venous oxygen saturation [ScvO2]
  • Remember that the foundation of successful ACLS is good BLS , represented in prompt high-quality CPR with minimal interruptions.[7][8]
  • A new class I recommendation is the use of quantitative waveform capnography for confirmation and monitoring of endotracheal tube placement.
  • Supraglottic advanced airways continues to be an alternative to endotracheal intubation for airway management during CPR.

Don'ts

  • Don't routinely use cricoid pressure during airway management of patients in cardiac arrest.
  • Don't administer atropine in the management of pulseless electrical activity as it is no longer recommnded.

References

  1. ACLS: Principles and Practice. p. 71-87. Dallas: American Heart Association, 2003. ISBN 0-87493-341-2.
  2. ACLS for Experienced Providers. p. 3-5. Dallas: American Heart Association, 2003. ISBN 0-87493-424-9.
  3. "2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care - Part 7.2: Management of Cardiac Arrest." Circulation 2005; 112: IV-58 - IV-66.
  4. Edelson, Dana P.; Sasson, Comilla; Chan, Paul S.; Atkins, Dianne L.; Aziz, Khalid; Becker, Lance B.; Berg, Robert A.; Bradley, Steven M.; Brooks, Steven C.; Cheng, Adam; Escobedo, Marilyn; Flores, Gustavo E.; Girotra, Saket; Hsu, Antony; Kamath-Rayne, Beena D.; Lee, Henry C.; Lehotzky, Rebecca E.; Mancini, Mary E.; Merchant, Raina M.; Nadkarni, Vinay M.; Panchal, Ashish R.; Peberdy, Mary Ann R.; Raymond, Tia T.; Walsh, Brian; Wang, David S.; Zelop, Carolyn M.; Topjian, Alexis (2020). "Interim Guidance for Basic and Advanced Life Support in Adults, Children, and Neonates With Suspected or Confirmed COVID-19:From the Emergency Cardiovascular Care Committee and Get With the Guidelines ® -Resuscitation Adult and Pediatric Task Forces of the American Heart Association in Collaboration with the American Academy of Pediatrics, American Association for Respiratory Care, American College of Emergency Physicians, The Society of Critical Care Anesthesiologists, and American Society of Anesthesiologists: Supporting Organizations: American Association of Critical Care Nurses and National EMS Physicians". Circulation. doi:10.1161/CIRCULATIONAHA.120.047463. ISSN 0009-7322. line feed character in |title= at position 201 (help)
  5. "The Approach to Cardiac Arrest".
  6. Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R; et al. (2010). "Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 122 (18 Suppl 3): S640–56. doi:10.1161/CIRCULATIONAHA.110.970889. PMID 20956217.
  7. Edelson DP, Abella BS, Kramer-Johansen J, Wik L, Myklebust H, Barry AM; et al. (2006). "Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest". Resuscitation. 71 (2): 137–45. doi:10.1016/j.resuscitation.2006.04.008. PMID 16982127.
  8. Eftestøl T, Sunde K, Steen PA (2002). "Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest". Circulation. 105 (19): 2270–3. PMID 12010909.

Template:WikiDoc Sources