Pancreatic neuroendocrine tumor medical therapy

Jump to navigation Jump to search

Pancreatic neuroendocrine tumor Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pancreatic neuroendocrine tumor from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Pancreatic neuroendocrine tumor medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pancreatic neuroendocrine tumor medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pancreatic neuroendocrine tumor medical therapy

CDC on Pancreatic neuroendocrine tumor medical therapy

Pancreatic neuroendocrine tumor medical therapy in the news

Blogs on Pancreatic neuroendocrine tumor medical therapy

Directions to Hospitals Treating Pancreatic neuroendocrine tumor

Risk calculators and risk factors for Pancreatic neuroendocrine tumor medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Treatment

In general, treatment for PanNET encompasses the same array of options as other neuroendocrine tumors, as discussed in that main article. However, there are some specific differences, which are discussed here.

In functioning PanNETs, octreotide is usually recommended prior to biopsy or surgery but is generally avoided in insulinomas to avoid profound hypoglycemia.

PanNETs in MEN1 are often multiple, and thus require different treatment and surveillance strategies.

Some PanNETs are more responsive to chemotherapy than are gastroenteric carcinoid tumors. Several agents have shown activity. In well differentiated PanNETs, chemotherapy is generally reserved for when there are no other treatment options. Combinations of several medicines have been used, such as doxorubicin with streptozocin and fluorouracil (5-FU) and capecitabine with temozolomide. Although marginally effective in well-differentiated PETs, cisplatin with etoposide has some activity in poorly differentiated neuroendocrine cancers (PDNECs), particularly if the PDNEC has an extremely high Ki-67 score of over 50%.

Several targeted therapy agents have been approved in PanNETs by the FDA based on improved progression-free survival (PFS):

  • everolimus (Afinitor) is labeled for treatment of progressive neuroendocrine tumors of pancreatic origin in patients with unresectable, locally advanced or metastatic disease. The safety and effectiveness of everolimus in carcinoid tumors have not been established.
  • sunitinib (Sutent) is labeled for treatment of progressive, well-differentiated pancreatic neuroendocrine tumors in patients with unresectable locally advanced or metastatic disease. Sutent also has approval from the European Commission for the treatment of 'unresectable or metastatic, well-differentiated pancreatic neuroendocrine tumors with disease progression in adults'. A phase III study of sunitinib treatment in well differentiated pNET that had worsened within the past 12 months (either advanced or metastatic disease) showed that sunitinib treatment improved progression-free survival (11.4 months vs. 5.5 months), overall survival, and the objective response rate (9.3% vs. 0.0%) when compared with placebo.

References