# Eigenfunction

In mathematics, an **eigenfunction** of a linear operator, *A*, defined on some function space is any non-zero function *f* in that space that returns from the operator exactly as is, except for a multiplicative scaling factor. More precisely, one has

for some scalar, λ, the corresponding eigenvalue. The solution of the differential eigenvalue problem also depends upon any boundary conditions required of . In each case there are only certain eigenvalues () that admit a corresponding solution for (with each belonging to the eigenvalue ) when combined with the boundary conditions. The existence of eigenvectors is typically the most insightful way to analyze .

For example, is an eigenfunction for the differential operator

for any value of , with a corresponding eigenvalue . If boundary conditions are applied to this system (e.g., at two physical locations in space), then only certain values of satisfy the boundary conditions, generating corresponding discrete eigenvalues .

## Applications

Eigenfunctions play an important role in many branches of physics. An important example is quantum mechanics, where the Schrödinger equation

has solutions of the form

where are eigenfunctions of the operator with eigenvalues . The fact that only certain eigenvalues with associated eigenfunctions satisfy Schrödinger's equation leads to a natural basis for quantum mechanics and the periodic table of the elements, with each an allowable energy state of the system. The success of this equation in explaining the spectral characteristics of hydrogen is considered one of the great triumphs of 20th century physics.

Due to the nature of the Hamiltonian operator , its eigenfunctions are orthogonal functions. This is not necessarily the case for eigenfunctions of other operators (such as the example mentioned above). Orthogonal functions , have the property that

where is the complex conjugate of

whenever , in which case the set is said to be linearly independent.